Barbashin-Krasovskii theorem for stochastic differential equations
نویسندگان
چکیده
منابع مشابه
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملA Lax equivalence theorem for stochastic differential equations
In this paper, a stochastic mean square version of Lax’s equivalence theorem for Hilbert space valued stochastic differential equations with additive and multiplicative noise is proved. Definitions for consistency, stability, and convergence in mean square of an approximation of a stochastic differential equation are given and it is shown that these notions imply similar results as those known ...
متن کاملThe Stable Manifold Theorem for Stochastic Differential Equations
We formulate and prove a local stable manifold theorem for stochastic differential equations (SDEs) that are driven by spatial Kunita-type semimartingales with stationary ergodic increments. Both Stratonovich and Itôtype equations are treated. Starting with the existence of a stochastic flow for a SDE, we introduce the notion of a hyperbolic stationary trajectory. We prove the existence of inva...
متن کاملThe Substitution Theorem for Semilinear Stochastic Partial Differential Equations
Abstract. In this article we establish a substitution theorem for semilinear stochastic evolution equations (see’s) depending on the initial condition as an infinite-dimensional parameter. Due to the infinitedimensionality of the initial conditions and of the stochastic dynamics, existing finite-dimensional results do not apply. The substitution theorem is proved using Malliavin calculus techni...
متن کاملThe Stable Manifold Theorem for Semilinear Stochastic Evolution Equations and Stochastic Partial Differential Equations∗
The main objective of this paper is to characterize the pathwise local structure of solutions of semilinear stochastic evolution equations (see’s) and stochastic partial differential equations (spde’s) near stationary solutions. Such characterization is realized through the long-term behavior of the solution field near stationary points. The analysis falls in two parts 1, 2. In Part 1, we prove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2010
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-2010-10466-5